Leveraging Repetition to Parse the Auditory Scene

Josh McDermott, Bryan Pardo, and Zafar Rafii
Outline

I. Introduction

II. How humans use repetition to identify sound sources (McDermott)

III. Coffee break

IV. Repetition-based algorithms for source separation (Rafii)

V. Links to other methods for source separation

VI. Conclusions/Questions
Who are we?

Josh McDermott, Assistant Professor
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
jhm@mit.edu
web.mit.edu/jhm/www/

Zafar Rafii, doctoral candidate
Electrical Engineering & Computer Science
Northwestern University
zafarrafii@u.northwestern.edu
www.cs.northwestern.edu/~zra446/

Bryan Pardo, Associate Professor
Electrical Engineering & Computer Science
Music Theory & Cognition
Northwestern University
pardo@northwestern.edu
www.bryanpardo.com
What should you get out of this?

• An understanding of the psychological basis for the application of repetition to audio source separation and identification

• Understanding a new class of practical algorithms that perform repetition-based source separation

• Understanding the relationship of these algorithms to existing work in source separation
The Cocktail Party

A party, usually in the early evening, at which cocktails are served.
The Cocktail Party Problem

How to listen to a single talker among a mixture of conversations and background noises.
Audio Source Separation

- Separating out the individual sounds in an audio mixture

Source 1 + Source 2 = Mixture

Source Separation

Estimate 1

Estimate 2
One mixture = underdetermined problem

Mix = Sound1 + Sound2 + Sound 3

\[x_1 = \sum_{n=1}^{N} s_n(t) \]

Infinite number of solutions!
An underdetermined problem

• Sounds can be segregated only with the aid of prior assumptions about the world.
• We should infer sounds consistent with the acoustic input and our knowledge of real-world sounds.
Assertions

• Repetition is a fundamental element in generating and perceiving structure in music (...and audio in general)

• Repeating acoustic structure provides a cue that can be used to segment audio scenes
Questions

• What evidence is there that humans use repetition to parse an auditory scene?

• Can we build source separation algorithms based only on repetition cues?

• Can we leverage repetition to improve existing approaches to source separation?
Outline

I. Introduction

II. How humans use repetition to identify sound sources (McDermott)

III. Coffee break

IV. Repetition-based algorithms for source separation (Rafii)

V. Links to other methods for source separation

VI. Conclusions/Questions
Recovering Sound Sources From Repetition

Josh McDermott
Dept. of Brain and Cognitive Sciences
MIT
THE COCKTAIL PARTY PROBLEM

Natural auditory environments have many sound sources:
McDermott 2009, Current Biology
Sound Segregation

• Classic ill-posed problem in perception.

• To estimate sources, we need prior knowledge:

Humans use both generic (bottom-up) and specific (top-down) cues.
But… How do we acquire prior knowledge of sources?

If most of our auditory input is mixtures, how do we get started?

Need to know properties of individual sources to segregate them, but need to have segregated them to learn their properties…

Spatial cues are not of great help.
Idea: Perhaps if same source repeats, auditory system can detect repeating structure, infer presence of sound source.

Mixtures are accidental, don’t occur repeatedly

→ Repeating structure is likely to be a single source

To test, need a way to generate novel sound sources…

White noise is no good - all samples sound the same:
Want stimuli to have some properties of natural sounds, so that they don’t all sound the same (cf. white noise).

But want them NOT to have strong bottom-up grouping cues, so that we can examine how sounds might be recovered from mixtures BEFORE other grouping cues have been learned.
Time-frequency decompositions of real-world sounds exhibit correlations in both time and frequency:

![Graph showing correlation over time offset and subband offset for different sound types: Spoken Words, Animal Vocal, White Noise, and Exp. Stimuli.](image1)

![Spectrograms for the words "Two" and Bullfrog Call showing frequency and time axes.](image2)
We captured these correlations by modeling log-energy spectrograms as a multivariate Gaussian random variable:

McDermott, Wrobleski & Oxenham, PNAS 2011
Synthetic sources can be combined into mixtures:

Present mixture, then probe sound:

Was the probe one of the sounds in the mixture?

Sounds have structure, but not enough to allow segregation.

McDermott, Wroblewski & Oxenham, PNAS 2011
Single mixtures are hard to segment:
Performance not limited by discriminability:
• Performance seems to be limited by ability to segregate sounds.
• Stimuli evidently contain few bottom-up segregation cues.

Can people recover these sources if they are repeated?
Effect of presenting target multiple times, each time with different distractor:
Performance depends on number of *different* mixtures:

![Graph showing performance vs. number of different mixtures]
Effect of multiple mixtures swamps that of asynchrony:
Only variability of distractors mixed with targets matters:
Listeners are not simply using average spectrum:
Jittering onset of distractors has similar effect to varying them:
Auditory system seems to be tracking repeating structure.

Listeners can recover source when it occurs in multiple distinct mixtures.

Performance should be constrained by storage capacity: recognizing repeating structure requires comparison of input at different time points.

Can test by varying ISI:
Performance declines once targets are spaced by > ~400 ms:

Suggests listeners combine information across presentations, using short-term buffer.
Proof of concept: target can be extracted via cross-correlation.
How does repetition compare to spatial separation?

Spatial cues (ITD) are useful for localization, less so for segregation.

(cf Summerfield, Culling, Darwin, Shinn-Cunningham)
• Listeners can recognize sound sources from mixtures, if presented more than once across different mixtures.

• Repetition is not explicit in the auditory input, but induces regularities that the auditory system detects, uses to infer sources.

• Repetition can bootstrap sound segregation in the absence of bottom-up grouping cues, knowledge of sounds.

There are lots of repeating sounds in natural auditory environments for which this could be relevant, e.g. animal vocalizations.

Music perception may co-opt this mechanism.
Outline

I. Introduction

II. How humans use repetition to identify sound sources (McDermott)

III. Coffee break

IV. Repetition-based algorithms for source separation (Rafii)

V. Links to other methods for source separation

VI. Conclusions/Questions
Coffee Break

http://coffee-urn-info.blogspot.com/2011/08/clean-his-coffee-cup-was.html
Outline

I. Introduction

II. How humans use repetition to identify sound sources (McDermott)

III. Coffee break

IV. Repetition-based algorithms for source separation (Rafii)

V. Links to other methods for source separation

VI. Conclusions/Questions
REpeating Pattern Extraction Technique (REPET)

Zafar Rafii
Outline

I. Introduction
II. REPET
III. REPET-SIM
IV. Conclusion
Introduction

• **Repetition** is a fundamental element in generating and perceiving structure.

Repetition [...] is the basis of music as an art.

Heinrich Schenker (1868-1935)
Introduction

• In music, pieces are often characterized by an underlying **repeating structure** over which varying elements are superimposed.

![Image of musicians and a graph representing sound waves](image.png)
Introduction

• In music, pieces are often characterized by an underlying **repeating structure** over which varying elements are superimposed.

![Graph showing repeating structure](image_url)
Introduction

• This means there should be patterns that are more or less repeating in time and frequency
Introduction

- The (more or less) repeating patterns could be identified using a **time-frequency mask**

![Time-frequency Mask](image)

- **1** = +repeating
- **0** = -repeating

Zafar Rafii

10/08/12
Introduction

• The t-f mask could then be applied on the mixture to extract the **repeating patterns**
Introduction

- **REpeating Pattern Extraction Technique!**
 1. Identify the repeating elements
 2. Derive a repeating model
 3. Extract the repeating structure
Introduction

• Simple **music/voice separation** method!
 – Repeating structure ≈ musical background
 – Non-repeating structure ≈ vocal foreground

![Diagram showing mixture signal, REPET, repeating structure, and non-repeating structure.](image-url)
Introduction

- **Assumptions:**

 - The repeating background is **dense & low-ranked**

 → often true for **music** in a mixture of music + voice
Introduction

• **Assumptions:**
 - The repeating background is **dense & low-ranked**
 → low-ranked = repetitions at some **period rate**
Introduction

• Assumptions:
 – The non-repeating foreground is **sparse & varied**
 → often true for **voice** in a mixture of music + voice
Introduction

• **Practical advantages:**

 – Does not depend on special parameterizations
 – Does not rely on complex frameworks
 – Does not require prior training
Introduction

• **Practical interests:**
 – Audio post processing
 – Melody extraction
 – Karaoke gaming
Introduction

• **Intellectual interests:**
 – Music perception
 – Music understanding
 – Simply based on repetition!
Introduction

- Parallel with **background subtraction** in vision
 - Compare frames to estimate a background model
Introduction

• Parallel with **background subtraction** in vision
 – Extract the background from the foreground

[Image of people and Eiffel Tower]
Introduction

• Parallel with **background subtraction** in vision
 – In audio, we also need to identify the repetitions!
Introduction

• Parallel with **background subtraction** in vision

 – In audio, we also need to identify the repetitions!

![Waveform plots](image-url)
Outline

I. Introduction

II. REPET
 1. Method
 2. Extensions
 3. Evaluation

III. REPET-SIM

IV. Conclusion
Method

Step 1
Mixture Signal x → Mixture Spectrogram V → Beat Spectrum b

Step 2
V → Median → Repeating Segment S

Step 3
S → Repeating Spectrogram W → Time-Frequency Mask M

Zafar Rafii
1. Repeating Period

Step 1
Mixture Signal x → Mixture Spectrogram V → Beat Spectrum b

Step 2
V → Median → Repeating Segment S

Step 3
S → Repeating Spectrogram W → Time-Frequency Mask M
1. Repeating Period

- We compute the **autocorrelations** of the rows of the spectrogram to find periodicities.
1. Repeating Period

• We take the mean of the autocorrelations (rows) and obtain the **beat spectrum**
1. Repeating Period

• The beat spectrum reveals the repeating period p of the underlying repeating structure.
1. Repeating Period

- We assume here that the background is more dense and low-ranked than the foreground.
2. Repeating Segment

Step 1
- Mixture Signal x
- Mixture Spectrogram V
- Beat Spectrum b

Step 2
- V
- Median
- Repeating Segment S

Step 3
- S
- V
- Repeating Spectrogram W
- Time-Frequency Mask M

Zafar Rafii
2. Repeating Segment

- The repeating period is then used to **segment** the mixture spectrogram at period rate.
2. Repeating Segment

- The **repeating segment model** is calculated as the element-wise median of the segments.
2. Repeating Segment

- The **median** helps to derive a clean repeating segment, removing the non-repeating outliers
2. Repeating Segment

- We assume here that the foreground is more sparse and varied than the background.

Mixture Spectrogram

Repeating Segment

median

+ energy

- energy
2. Repeating Segment

Step 1
Mixture Signal x → Mixture Spectrogram V → Beat Spectrum b

Step 2
V → Median $\{\}$ → Repeating Segment S

Step 3
S → Repeating Spectrogram W → Time-Frequency Mask M
3. Repeating Structure

- We take the element-wise **minimum** between the repeating segment and the segments.
3. Repeating Structure

- We obtain a repeating spectrogram model for the repeating background.
3. Repeating Structure

- The repeating spectrogram cannot have values higher than the mixture spectrogram.
3. Repeating Structure

• We divide the repeating spectrogram by the mixture spectrogram, element-wise.
3. Repeating Structure

- We obtain a **soft time-frequency mask** (with values in $[0,1]$)
3. Repeating Structure

- In the soft t-f mask, the less/more a t-f bin is repeating, the more it is weighted toward 0/1.
3. Repeating Structure

- A **binary t-f mask** can be further derived by choosing a threshold between 0 and 1.
3. Repeating Structure

• **We multiplied** the t-f mask with the mixture STFT to extract the repeating background STFT
3. Repeating Structure

- The **repeating background** is obtained by inverting its STFT into the time domain.
3. Repeating Structure

• The **non-repeating foreground** is obtained by subtracting the background from the mixture.
Method

• Repeating background ≈ **music component**
• Non-repeating foreground ≈ **voice component**

REPET
1. Repeating period
2. Repeating segment
3. Repeating structure
Outline

I. Introduction

II. REPET
 1. Method
 2. Extensions
 3. Evaluation

III. REPET-SIM

IV. Conclusion
Extensions

• REPET works well on excerpts with a relatively stable repeating background (e.g., 10 s verse)
• For full-track songs, the repeating background is likely to vary over time (e.g., verse/chorus)
1. Prior Segmentation

- We could do a **prior segmentation** of the song and apply REPET to the individual sections.
2. Sliding Window

- We could apply REPET to local sections of the song over time via a fixed **sliding window**

![Diagram](image-url)

Verse	**Chorus**	**Verse**
REPET | REPET | REPET
---|---|---
Full repeating background

Full mixture
3. Adaptive REPET

- We could adapt REPET along time by locally modeling the repeating background.
Adaptive REPET

Step 1
Mixture Signal \(x \)

Step 2
\(i-1p_i \) \(i \) \(i+1p_i \)

Step 3
\(U \)

Median
\(i-1p_i \) \(i \) \(i+1p_i \)

Zafar Rafii

Repeating Spectrogram \(W \)

Time-Frequency Mask \(M \)
Adaptive REPET

Step 1
Mixture Signal \mathbf{x}

Step 2
Mixture Spectrogram \mathbf{V}

Step 3
Beat Spectrogram \mathbf{B}

Repeating Spectrogram \mathbf{U}

Mixture Spectrogram \mathbf{V}

Median

Repeating Spectrogram \mathbf{W}

Time-Frequency Mask \mathbf{M}

Zafar Rafii
Original REPET

Step 1
Mixture Signal x ➔ Mixture Spectrogram V ➔ Beat Spectrum b

Step 2
V ➔ $1p$, $2p$ ➔ Median ➔ Repeating Segment S

Step 3
S ➔ V ➔ Repeating Spectrogram W ➔ Time-Frequency Mask M

Zafar Rafii
Adaptive vs. original REPET

- REPET assumes a stable repeating background with repetitions occurring at **fixed period rate**
Adaptive vs. original REPET

- The original REPET shows limitations when the repeating background varies over time

Varying periodically repeating source + Non-repeating source = Mixture

Varying periodically repeating estimate + Non-repeating estimate = REPET
Adaptive vs. original REPET

The adaptive REPET can handle **varying repeating structures** (e.g., in full-track songs)

![Diagram showing the process of adaptive REPET handling varying repeating structures.](image-url)
Outline

I. Introduction

II. REPET
 1. Method
 2. Extensions
 3. Evaluation

III. REPET-SIM

IV. Conclusion
Music/Voice Separation

- **Music/voice separation** systems generally first identify the vocal/non-vocal segments and then use a variety of techniques to separate the music and voice components.

![Diagram of music/voice separation process]
Music/Voice Separation

• **Non-negative Matrix Factorization (NMF)**
 – Iterative factorization of the mixture spectrogram into non-negative additive components

→ Need to know the number of components
→ Need a proper initialization
Music/Voice Separation

• Accompaniment modeling
 – Modeling of the musical accompaniment from the non-vocal segments in the mixture

→ Need an accurate vocal/non-vocal segmentation
→ Need a sufficient amount of non-vocal segments
Music/Voice Separation

• **Pitch-based inference**

 – Separation of the vocals using the predominant pitch contour extracted from the vocal segments

 → Need an accurate predominant pitch detection

 → Cannot extract unvoiced vocals
Evaluation

• **REPET** [Rafii et al., 2012]
 – Automatic period finder
 – Soft time-frequency masking

• **Competitive method** [Durrieu et al., 2011]
 – Source/filter modeling with NMF framework
 – Unvoiced vocals estimation

• **Data set** [Hsu et al., 2010]
 – 1,000 song clips (from karaoke Chinese pop songs)
 – 3 voice-to-music mixing ratios (-5, 0, and 5 dB)
Evaluation

SDR (dB)

![Box plots showing SDR (dB) for music and voice at -5dB, 0dB, and 5dB.](image)

- **D** = Durrieu et al.
- **D+H** = Durrieu + High-pass
- **R** = REPET
- **R+H** = REPET + High-pass

10/08/12

Zafar Rafii

102
Evaluation

• Conclusions
 – REPET can compete with state-of-the-art (and more complex) music/voice separation methods

 – There is room for improvement (+ high-pass, + optimal period, + vocal frames)

 – Average computation time: 0.016 second for 1 second of mixture! (vs. 3.863 seconds for Durrieu)
Example

- **REPET vs. Durrieu et al.**

![Graphs showing comparison between REPET and Durrieu et al. methods for music and voice estimates.](image)
Outline

I. Introduction
II. REPET
III. REPET-SIM
 1. Similarity
 2. Method
 3. Evaluation
IV. Conclusion
Similarity

• REPET (and its extensions) assume periodically repeating patterns
Similarity

• Repetitions can also happen \textit{intermittently} or without a global (or local) period
Similarity

- Instead of looking for periodicities, we can look for similarities, using a similarity matrix.
The similarity matrix is a matrix where each bin measures the (dis)similarity between any two elements of a sequence given a metric.
Similarity

- In audio, the SM can help to visualize the time structure and find repeating/similar patterns.
Similarity

• The SM can be built from **different features**: spectrogram, chromagram, etc.

Chromagram

\[
\begin{array}{cccccccc}
\text{time (s)} & 2 & 4 & 6 & 8 & 10 & 12 \\
\text{chroma} & C & D & E & F & G & A \\
A\# & G\# & F\# & E & D & C
\end{array}
\]

Similarity Matrix

\[
\begin{array}{cccccccc}
\text{time (s)} & 2 & 4 & 6 & 8 & 10 & 12 \\
2 & & & & & & \\
4 & & & & & & \\
6 & & & & & & \\
8 & & & & & & \\
10 & & & & & & \\
12 & & & & & & \\
\end{array}
\]

Zafar Rafii
Similarity

- The SM can be built using **different metrics**: cosine similarity, Euclidean distance, etc.
Similarity

- We choose to simply build the SM from the
 spectrogram using the **cosine similarity**
Similarity

- Given a mixture, we (again) assume that:
 - The repeating background is **dense & low-ranked**
 - The non-repeating foreground is **sparse & varied**
Similarity

• By low-ranked, we now mean the background is repeating, but not necessarily periodically
Similarity

• The SM of a mixture is then likely to reveal the structure of the repeating background
Similarity

• **REPET-SIM!**
 1. Identify the repeating/similar elements
 2. Derive a repeating model
 3. Extract the repeating structure
Similarity

- Simple **music/voice separation** method!
 - Repeating structure ≈ musical background
 - Non-repeating structure ≈ vocal foreground
Similarity

- **Advantages** compared with REPET:
 - Can handle intermittent repeating elements
 - Can handle fast-varying repeating structures
 - Can handle full-track songs

![Diagram](image-url)
Outline

I. Introduction

II. REPET

III. REPET-SIM
 1. Similarity
 2. Method
 3. Evaluation

IV. Conclusion
REPET-SIM

Step 1
Mixture Signal x

Step 2
Median
Repeating Spectrogram U

Step 3
Repeating Spectrogram W
Time-Frequency Mask M

Zafar Rafii
Adaptive REPET

Step 1
Mixture Signal x

Step 2
Mixture Spectrogram V

Step 3
Beat Spectrogram B

Median

Repeating Spectrogram U

Time-Frequency Mask M

Zafar Rafii
The adaptive REPET can handle **varying periodically repeating structures**
REPET-SIM vs. adaptive REPET

• The adaptive REPET shows limitations when the repeating background is not periodical.
REPET-SIM vs. adaptive REPET

- REPET-SIM can also handle **non-periodically repeating structures** (e.g., in complex songs)
1. Repeating Elements

Step 1

Mixture Signal x

Mixture Spectrogram V

Similarity Matrix S

Step 2

V

Median

Repeating Spectrogram U

Step 3

U

Repeating Spectrogram W

Time-Frequency Mask M

Zafar Rafii
1. Repeating Elements

- We take the cosine similarity between any two pairs of columns and get a similarity matrix.
1. Repeating Elements

- The SM reveals for every frame i, the frames j_k that are the most similar to frame i.

```
Mixture Spectrogram

Similarity Matrix

Mixture Spectrogram
```
1. Repeating Elements

• We assume here that the background is more dense and low-ranked than the foreground
1. Repeating Elements

Step 1:
- Mixture Signal x
- Mixture Spectrogram V
- Similarity Matrix S

Step 2:
- Repeating Spectrogram U
- Median

Step 3:
- Time-Frequency Mask M
- Zafar Rafii
2. Repeating Model

Step 1
Mixture Signal x

Step 2
Mixture Spectrogram V

Step 3
Repeating Spectrogram W

Similarity Matrix S

Repeating Spectrogram U

Time-Frequency Mask M

Zafar Rafii
2. Repeating Model

- For every frame i, we take the median of the corresponding most similar frames j_k.
2. Repeating Model

- We obtain an initial repeating spectrogram model
2. Repeating Model

- The **median** helps to derive a clean repeating spectrogram, removing non-repeating outliers.
2. Repeating Model

- We assume here that the foreground is more sparse and varied than the background
2. Repeating Model

Step 1
Mixture Signal x

Step 2
Mixture Spectrogram V
Median
Repeating Spectrogram U

Step 3
Repeating Spectrogram W
Time-Frequency Mask M

Zafar Rafii
3. Repeating Structure

Step 1
Mixture Signal x

Step 2
Mixture Spectrogram V

Step 3
Similarity Matrix S

Repeating Spectrogram U

Median

Repeating Spectrogram W

Time-Frequency Mask M

Zafar Rafii
3. Repeating Structure

• We take the element-wise minimum between the repeating and mixture spectrograms
3. Repeating Structure

- We obtain a refined repeating spectrogram model for the repeating background
3. Repeating Structure

• The repeating spectrogram cannot have values higher than the mixture spectrogram.
3. Repeating Structure

- We **divide** the repeating spectrogram by the mixture spectrogram, element-wise.
3. Repeating Structure

- We obtain a **soft time-frequency** mask (with values in [0,1])
3. Repeating Structure

- We multiplied the mask with the mixture STFT to extract the repeating background STFT
3. Repeating Structure

- The **repeating background** is obtained by inverting its STFT into the time domain.
3. Repeating Structure

- **The non-repeating foreground** is obtained by subtracting the background from the mixture.
Method

- Repeating background ≈ **music component**
- Non-repeating foreground ≈ **voice component**
Method

- Repeating background ≈ music component
- Non-repeating foreground ≈ voice component

REPET
1. Repeating period
2. Repeating segment
3. Repeating structure
Outline

I. Introduction

II. REPET

III. REPET-SIM
 1. Similarity
 2. Method
 3. Evaluation

IV. Conclusion
Evaluation

- **REPET-SIM** [Rafii et al., 2012]
 - Cosine similarity
 - Soft time-frequency masking

- **Competitive method 1** [FitzGerald et al., 2010]
 - Median filtering of the spectrogram at different frequency resolutions to extract the vocals

- **Competitive method 2** [Liutkus et al., 2012]
 - Adaptive REPET with automatic periods finder and soft time-frequency masking

- **Data set**
 - 14 full-track real-world songs (from The Beach Boys)
 - 3 voice-to-music mixing ratios (-6, 0, and 6 dB)
Evaluation

SDR (dB)

Music

Voice

MMFS = FitzGerald et al.
REPET+ = Adaptive REPET
Proposed = REPET-SIM
Evaluation

• Conclusions
 – REPET-SIM can compete with a recent music/voice separation method
 – REPET-SIM can perform as well as the adaptive REPET
 – Average computation time: 0.563 second for 1 second of mixture (vs. 1.183 seconds for Adaptive)
Examples

• REPET-SIM

Blackalicious - Alphabet Aerobics

Music estimate

Voice estimate

10/08/12
Examples

• Adaptive REPET

Blackalicious - Alphabet Aerobics

Music estimate

Voice estimate

10/08/12
Outline

I. Introduction

II. How humans use repetition to identify sound sources (McDermott)

III. Coffee break

IV. Repetition-based algorithms for source separation (Rafii)

V. Links to other methods for source separation

VI. Conclusions/Questions
Links to Other Source Separation Methods

Bryan Pardo
Electrical Engineering & Computer Science
School of Music
Northwestern University
Closely related methods

• Nearest Neighbor Median Filtering

• Robust Principal Component Analysis
Nearest Neighbor Median Filtering
(Fitzgerald 2012)

• Essentially identical to REPET-SIM
 differences include:
 Squared Euclidean distance replaces Cosine similarity
 No prohibition on using immediate temporal neighbor frames as repetitions

Let’s see what allowing temporal neighbors as repetitions does...
Separate an original matrix M into…

(We’ll hear this example later)
Robust Principal Component Analysis

A Sparse Matrix, S AND A Low-rank Matrix, L

How? Minimize $\| L \|_* + \lambda \| S \|_1$

...subject to constraining $L + S \approx M$

Similar goals to REPET-SIM
RPCA Assumptions

• Sparse matrix S must NOT be low rank
 Translation: Non repeating elements must be distributed throughout the audio.
 Problematic example: Repeated funk riff with the occasional “good god”

• Low rank matrix L must NOT be sparse
 Translation: It works better if your accompaniment occupies a lot of the spectrum (chords, snare drums)
 Problematic example: Voice + Acoustic Bass
Slow

• Original approach used Iterative Thresholding.
• Converges extremely slowly
 About 10^4 iterations to converge
 Each iteration requires one singular value decomposition.
 A matrix of $m = 800$, took 8 hours on a PC from 2009.
• Accelerated Proximal Gradient is 50x faster
 About 10 minutes for the same matrix
Faster

• Huang et al (ICASSP 2012) use the Augmented Lagrange Multiplier (ALM) method for RPCA.
• Not an exact method...but 250 times faster than Iterative Thresholding
• Approx real-time on 16 bit audio at 16 kHz
• Let’s compare/contrast with
 A periodic method (REPET)
 A Similarity Matrix method (REPET SIM)
Example 1: Singer + Synthesizer

Background: (horizontal lines): low rank, aperiodic, not sparse

Foreground: (squiggly lines): sparse, aperiodic, not low rank, broadly distributed

Processing Time in sec.

- RPCA: 13.9
- REPET SIM: 1.0
- REPET: 0.8

10.5 seconds
16 bits
16 kHz
Example 2: Clarinet + Guitar/Bass/Snare

Background: (short, horiz. lines making triangles): low rank, sparse, periodic

Foreground: (long horiz. lines): sparse, not periodic, not low rank, broadly distributed

15.4 seconds
16 bits
11.025 kHz

Processing Time in sec.
RPCA 14.6
REPET SIM 1.7
REPET 1.4
When to use...

<table>
<thead>
<tr>
<th></th>
<th>REPET</th>
<th>REPET-SIM</th>
<th>RPCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>foreground</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodic</td>
<td>never</td>
<td>don’t care</td>
<td>don’t care</td>
</tr>
<tr>
<td>low rank</td>
<td>don’t care</td>
<td>never</td>
<td>never</td>
</tr>
<tr>
<td>sparse</td>
<td>helps</td>
<td>helps</td>
<td>required</td>
</tr>
<tr>
<td>broadly distributed</td>
<td>don’t care</td>
<td>don’t care</td>
<td>required</td>
</tr>
<tr>
<td>background</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>periodic</td>
<td>required</td>
<td>don’t care</td>
<td>don’t care</td>
</tr>
<tr>
<td>low rank</td>
<td>implied by periodic</td>
<td>required</td>
<td>required</td>
</tr>
<tr>
<td>sparse</td>
<td>don’t care</td>
<td>don’t care</td>
<td>never</td>
</tr>
<tr>
<td>broadly distributed</td>
<td>don’t care</td>
<td>don’t care</td>
<td>helps</td>
</tr>
</tbody>
</table>
Repetition to Augment Separation

• Repetition is a powerful cue for source separation

• It works in isolation (e.g. REPET)

• How can we leverage repetition to improve other approaches to source separation?
Independent Component Analysis (ICA)

• Assumes statistically independent sources
• Number of mixtures cannot be less than the number of sources

\[x_m = \sum_{n=1}^{N} a_{n,m} s_{n,m} (t - \delta_{n,m}) \]
Independent Component Analysis (ICA)

- Probably not how people do it
 People have 2 ears. Scenes often have >2 sources.
- Not useful when there aren’t enough mics

\[
x_m = \sum_{n=1}^{N} a_{n,m} s_{n,m}(t - \delta_{n,m})
\]
ICA and Repetition

• Hedayiogl et al (ICASSP 2011) found a way to leverage repetition for single-mixture ICA
 1. Assume periodically repeating sources (e.g. heart beat patterns)
 2. Record the audio with a single microphone
 3. Segment the audio at period of repetition
 4. Call each segment a channel
 5. Do ICA, just like usual
Nonnegative Matrix Factorization (NMF)

...and its probabilistic reframing, known as Probabilistic Latent Component Analysis (PLCA)

Just find \(WH = X \) and we’re done

Activation matrix \(H \)

Spectral Dictionary \(W \)

Magnitude Spectrogram \(X \)

CATCH: Without special care (setting priors, picking good examples) dictionary elements often represent parts of sources and/or mixes of sources. IE we didn’t actually do source isolation.
NMF & REPET

• Both assume a lower-rank encoding of (some of the) data is possible

• NMF/PLCA assume a fixed size spectral dictionary prior to processing
 Picking a good dictionary size is a black art

• REPET’s “dictionary” size depends on the period of the audio
Improving NMF with Repetition

- Could we find a good dictionary size for NMF by finding the period of repetition prior to processing?

- Could we seed the dictionary for NMF with the repeating spectrum segment calculated by REPET?
Using Spatial Cues: DUET

- Each source location has a unique cross-channel amplitude scaling a_n and time-shift δ_n
- Find those and you can separate your sources with a mask (e.g. DUET)

\[
x_1 = \sum_{n=1}^{N} s_n(t)
\]

\[
x_2 = \sum_{n=1}^{N} a_n s_n(t - \delta_n)
\]
Approach: Using Spatial Cues

• Translation: Sound **closer** to the left ear hits it **sooner** and **louder**. Use that.
Approach: Using Spatial Cues

- Can have more sources than microphones
- Assumes sources don’t move
- Has great difficulty with reverberation
Approach: Using Spatial Cues

- Can have more sources than microphones
- Assumes sources don’t move
- Has great difficulty with reverberation
- People don’t need 2 ears to follow sounds in a mix

$s_1(t)$ $s_2(t)$ $s_3(t)$

Still works!
Repetition and Duet

• Could the same game played with ICA be done with DUET?
 – Move a single microphone around
 – Align the recordings at the period of repetition
 – Run DUET

• Could we combine DUET and REPET to overcome reverberation issues?
If you like any of those ideas...

....maybe you’d like to collaborate?

Our contact information is at the start of these slides.
Outline

I. Introduction
II. How humans use repetition to identify sound sources (McDermott)
III. Coffee break
IV. Repetition-based algorithms for source separation (Rafii)
V. Links to other methods for source separation
VI. Conclusions/Questions
Conclusions

• Repetition is a fundamental element in generating and perceiving structure in audio
• Repeating structure can be used to effectively segment audio scenes
• Algorithms based on repetition are related to those seeking low-rank decompositions
• The assumptions they make are different than existing approaches
• Therefore, they complement existing approaches
Getting Source Code

• REPET
 http://music.cs.northwestern.edu/research.php?project=repet

• REPET SIM
 http://music.cs.northwestern.edu/research.php?project=repet

• RPCA
 https://sites.google.com/site/singingvoiceseparationrpca/
Questions/Discussion

?
References