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The Constant-Q Harmonic Coefficients
A timbre feature designed for music signals

T imbre is the attribute of sound that 
makes, for example, two musical 
instruments playing the same note 

sound different. It is typically associ-
ated with the spectral (but also the 
temporal) envelope and assumed to be 
independent from the pitch (but also 
the loudness) of the sound [1]. This arti-
cle shows how to design a simple but 
effective pitch-independent timbre fea-
ture, well adapted to musical data, by 
deriving it from the constant-Q trans-
form (CQT), a log-frequency transform 
that matches the typical Western musi-
cal scale [2], [3]. The decomposition 
of the CQT spectrum into an energy-
normalized pitch component and a 
pitch-normalized spectral component 
is demonstrated, the latter from which 
a number of harmonic coefficients are 
extracted. The discriminative powers 
of these constant-Q harmonic coef-
ficients (CQHCs) are then evaluated 
on the NSynth data set [4], a publicly 
available, large-scale data set of musi-
cal notes, where they are compared 
with the mel-frequency cepstral coef-
ficients (MFCCs) [5], a feature origi-
nally designed for speech recognition 
but commonly used to characterize 
timbre in music.

Relevance
A timbre feature that is well adapted to 
musical data, pitch independent, and that 
has good discriminative power can find 

uses in a number of applications, such as 
similarity detection, sound recognition, 
and audio classification, in particular, 
of musical instruments. Additionally, 
the ability to decom-
pose the spectrum of 
a sound—here, the 
CQT spectrum—into 
a pitch-normalized 
spectral component 
and an energy-nor-
malized pitch compo-
nent can be useful for 
the analysis, transfor-
mation, and resynthe-
sis of music signals. 
An energy-normalized pitch component 
can also potentially be used for tasks  
such as pitch identification and melo-
dy extraction.

Prerequisites
A basic knowledge of audio signal pro-
cessing and some knowledge of music 
information retrieval (MIR) [6] are 
required to understand this article, in 
particular, concepts such as the Fourier 
transform (FT), CQT, MFCCs, convolu-
tion, and pitch.

Problem statement
The multidimensional nature of timbre 
makes it an attribute that is tricky to 
quantify in terms of one simple character-
istic feature [7]. Although it is assumed 
to be independent from pitch and loud-
ness, it is not really feasible to fully dis-
entangle timbre from those qualities as 
timbre is inherently dependent on the 

spectral content of the sound, which is 
also defined by its pitch and loudness 
[1]. Researchers in MIR proposed a 
number of descriptors to characterize 

one or more aspects 
of timbre [8], but 
they frequently resort 
to using the MFCCs 
when they need one 
simple timbre fea-
ture [6]. Although 
the MFCCs were 
shown to be practical 
in a number of MIR 
t asks ,  t hey were 
initially designed  

for speech processing applications [5] 
and are not necessarily well adapted 
to musical data. In particular, they are 
derived through an old procedure that 
makes use of the mel scale, a perceptual 
scale experimentally designed 85 years 
ago to approximate the human auditory 
system’s response [9]. More recently, 
a number of data-driven approaches 
attempted to learn some timbral repre-
sentations from musical data, but typi-
cally in terms of implicit embeddings, 
which are tied to specific trained mod-
els [4], [10]–[13] and not necessarily as 
explicit and interpretable features such 
as the MFCCs, which are still often 
preferred as the simple go-to feature 
to characterize timbre in music by 
MIR practitioners.
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The CQHCs is a timbre feature that 
is well adapted to musical data, 
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Although the MFCCs were 
shown to be practical in a 
number of MIR tasks, they 
were initially designed 
for speech processing 
applications and are not 
necessarily well adapted 
to musical data.
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 pitch-independent, simple to com-
pute, interpretable, and effective. 
First, a brief description of the CQT 
is presented, then it is shown how one 
can decompose the CQT spectrum 
into a pitch-normalized spectral com-
ponent and an energy-normalized pitch 
component, and finally extract a num-
ber of coefficients from the spectral 
component. Note that this work does 
not claim to propose the best tim-
bre feature for MIR applications, as 
today’s data-driven approaches are 
able to learn decent timbral represen-
tations, but rather to illustrate how to 
design a good timbre feature without 
relying on any form of supervised 
learning, using common theories from 
digital signal processing.

Description of the CQT
The CQT is a frequency transform with 
a logarithmic resolution that matches the 
equal temperament, a tuning system typ-
ically used in Western music that divides 
an octave into equal steps [2]. Unlike 
the discrete Fourier transform (DFT), 
which uses the same window length 
for every frequency bin, leading to a 
linear frequency resolution, the CQT 
uses window lengths that decrease with 
increasing frequency, with a ratio of cen-
ter frequency to frequency width—also 
known as the quality factor (Q)—which 
is constant, leading to a logarithmic fre-
quency resolution where the frequency 
bins essentially correspond to the tones 
in the typical Western musical scale, 
given a chosen octave resolution (i.e., the 
number of frequency bins per octave). 
Although the direct calculation of the 
CQT is slow, a fast implementation was 
also proposed, which makes use of the 
fast Fourier transform (FFT) in conjunc-
tion with the use of a kernel [3].

The logarithmic frequency resolu-
tion of the CQT allows the harmon-
ics of musical notes to form a constant 
pattern in the frequency domain, with 
the relative positions of the harmonics 
remaining the same as the fundamental 
frequency shifts up or down in frequen-
cy. The locations of these harmonics in 
the CQT spectrum (i.e., the magnitude 
or power of the original complex CQT) 
therefore depends only on the location 

of the fundamental frequency and the 
chosen octave resolution. As harmonics 
are the spectral coefficients that carry 
most of the instrument’s information, 
they are a good candidate to character-
ize the timbre of the instrument. Pro-
vided that the CQT spectrum can be 
normalized in pitch, i.e., by somehow 
bringing the fundamental frequency 
down to the lowest frequency bin, the 
locations of the har-
monics could then 
be easily inferred 
a nd t hei r  energy 
could be extracted, 
leading to a simple 
but effective timbre 
feature for music 
signals.

Deconvolution of the CQT spectrum
To show how to “pitch normalize” a 
CQT spectrum, first, the assumption 
is that a CQT spectrum X can be rep-
resented as the convolution between a 
pitch-normalized spectral component 
S (which mostly contains the timbre 
information) and an energy-normalized 
pitch component P (which mostly con-
tains the pitch information), as shown in 
(1), where ) represents the convolution 
operation.

 X S P)=  (1)

This convolution process can also be 
thought of as a source-filter model 
[14], which is here not applied in the 
time domain but rather the frequency 
domain, with the source and the filter 
being the pitch and spectral compo-
nents, respectively.

Observation 1: A pitch change in the 
audio translates to a linear shift in the 
CQT spectrum [2], [3]. Assuming that 
pitch and timbre are independent, this 
implies that the same musical object at 
different pitches would have a similar 
spectral component but a shifted pitch 
component (while two different musi-
cal objects at the same pitch would 
have different spectral components 
but a similar pitch component). This is 
summarized in (2), where X, S, P, and 

, ,X S Pl l l represent the CQT spectrum, 
spectral component, and pitch compo-

nent for a musical object, and for a pitch-
shifted version of the same musical 
object, respectively, and . represents 
the approximate equality.
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Note that, although in theory the equal-
ity should be exact, in practice, two 

musical objects at 
two different pitches 
(e.g., two different 
notes from the same 
instrument) are not 
exact translations 
of each other, hence 
t he  approx i mate 
equality.

Observation 2: The FT of the con-
volution between two functions is 
equal to the pointwise product between 
the FTs of the two functions, a prop-
erty known as the convolution theorem 
[15]. This implies that the FT of the 
CQT spectrum is equal to the point-
wise product between the FT of the 
spectral component and the FT of the 
pitch component. Given the first obser-
vation, this further implies that the FT 
of the spectral component for a musical 
object and for a pitch-shifted version of 
it would be equal. This is summarized 
in (3), where F (.) represents the FT 
function and $ the pointwise product.
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Observation 3: The magnitude FT is 
shift invariant [15]. This implies that the 
magnitude of the FT of the CQT spec-
trum for a musical object and for a pitch-
shifted version of it would be equal. 
This is summarized in (4), where .; ; and 

(.)Arg  represent the modulus and argu-
ment, respectively, for a complex array 
and j, the imaginary unit.
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Given the previous observations, we 
can therefore infer that the FT of the 

The CQHCs is a timbre 
feature that is well 
adapted to musical data, 
pitch-independent, simple 
to compute, interpretable, 
and effective.
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spectral component could be approx-
imated by the magnitude FT of the 
CQT spectrum, while the FT of the 
pitch component could be approximated 

by the phase component. This finally 
gives us the estimates for the spectral 
component and the pitch component, 
after taking their inverse FTs, as shown 

in (5), where F (.)1-  represents the 
inverse FT function.
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Figure 1 depicts an example of the 
deconvolution of a CQT spectrogram 
(i.e., a concatenation of CQT spec-
tra over time) into a pitch-normalized 
spectral component and an energy-
normalized pitch component. The 
CQT spectrogram was computed from 
an audio signal created by concatenating 
12 4-s notes of an acoustic bass playing 
from C1 (32.70 Hz) to B1 (61.74 Hz) in 
ascending pitch. The notes come from 
the NSynth data set [4] and correspond 
to instrument id bass _ acous-
tic _ 000, MIDI numbers 024 to 
035, and velocity number 075. The 
CQT spectrogram was computed using 
librosa [16], [17], with a sampling rate 
of 16 kHz, a hop length of 512 samples, 
a minimum frequency of 32.7 Hz (cor-
responding to C1), 95 frequency bins, 
and 12 bins per octave. As shown in 
Figure 1, the spectral component looks 
as if the CQT spectrogram has been nor-
malized in pitch, with all the notes being 
brought down to the lowest fundamental 
frequency (corresponding to C1), while 
the pitch component looks as if the CQT 
spectrogram has been stripped down 
from its energy, leaving mostly the fun-
damental frequencies of the notes. Note 
that in practice, a power CQT spectro-
gram (i.e., magnitude to the power of 
2) is used and the real part of both the 
spectral and pitch components are taken 
to ensure real values. This deconvolu-
tion can also potentially be postpro-
cessed, for example, by zeroing the few 
negative values in the pitch component 
and using them to derive a refined spec-
tral component. 

This deconvolution process can also 
be thought of as the normalization of 
the CQT spectrum by the magnitude of 
its FT (which here would correspond to 
the FT of the spectral component), lead-
ing to a sharper CQT spectrum (which 
here would correspond to the pitch com-
ponent) in the manner of the  generalized 
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FIGURE 1. (a) The deconvolution of the CQT spectrogram (shown in dB) of 12 acoustic bass notes 
playing from C1 to B1, into (b) a pitch-normalized spectral component (shown in dB), and (c) an 
energy-normalized pitch component (shown in [0, 1]).
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cross-correlation phase transform (GCC-
PHAT) method, which aims at normal-
izing a cross-correlation function by 
its magnitude spectrum to sharpen the 
cross-correlation peaks [18].

Note that the authors in [19] pre-
sented a method they called specmurt 
analysis, where they similarly assumed 
that a CQT-like log spectrum can be 
decomposed into a so-called common 
harmonic structure and a fundamental 
frequency distribution, however, with 
the aim of extracting multiple funda-
mental frequencies from polyphonic 
music signals, focusing essentially on 
the pitch component rather than the 
spectral one. Inspired by the derivation 
of the cepstrum [20], they proposed 
estimating the fundamental frequency 
distribution through inverse filtering, 
starting from an initial assumed com-
mon harmonic structure and using an 
iterative algorithm to refine it in order 
to refine the fundamental frequency 
distribution itself. Although their final 
leftover harmonic structure could poten-
tially be used to also extract harmonic 
coefficients, note that the pitch-normal-
ized spectral component shown in (5) 
is derived through a simpler and more 
intuitive idea, which is not based on heu-
ristics or an iterative algorithm.

Extraction of the  
harmonic coefficients
The spectral component resulting 
from the deconvolution of the CQT 
spectrum can thus be thought of as 

a pitch-normalized CQT spectrum 
where the harmonics of the instrument 
have essentially been brought down to 
the same lowest note level. Given the 
octave resolution, which was used when 
computing the CQT, we can then easily 
infer the locations of 
those harmonics in 
the spectral compo-
nent. We can subse-
quently extract these 
harmonic coefficients 
from the spectral 
component and thus 
obtain a compact and 
interpretable feature 
for characterizing 
the timbre of the 
instrument. Equa-
tion (6) demonstrates 
how to derive the 
indices of the harmonic coefficients 
given ,Or  the octave resolution, and 

,Nc  the number of desired coeffi-
cients, and finally extract the CQHCs 
from the spectral component S, with 

(.)log2  and (.)round  representing the 
binary logarithm and the round func-
tion, respectively.
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Figure 2(a) displays an example 
of CQHCs. Twenty coefficients were 
extracted from the spectral compo-
nent resulting from the deconvolution 
of the CQT spectrogram of the musi-

cal signal shown in Figure 1. These 
coefficients essentially correspond 
to the harmonics of the instrument, 
which contains most of its spectral  
energy and can therefore be a reason-
able representation of the timbre of the 

instrument. For com-
parison, Figure 2(b) 
shows the MFCCs 
derived f rom the 
same musical signal. 
Twenty coefficients 
were computed using 
librosa [16], with a 
sampl ing rate  of 
16 kHz, a window 
length of 1,024 sam-
ples, and hop length 
of 512 samples, match-
ing the time resolution 
of the CQHCs so that 

both features have the same size in time 
and frequency.

The reader is reminded how the 
MFCCs are commonly derived. First, 
a classic spectrogram is computed 
from the audio signal using the short-
time Fourier transform (STFT), and the 
powers of the frequencies in each frame 
are then mapped onto the mel scale 
[9] using triangular overlapping win-
dows. This essentially produces a mel 
spectrogram. Then the log of every mel 
frequency is taken, followed by the dis-
crete cosine transform of each frame. 
Finally, the MFCCs are selected as 
the lowest coefficients in the resulting 
spectrum, excluding the very first one 
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FIGURE 2. (a) The CQHCs extracted from the spectral component obtained following the deconvolution of the CQT spectrogram shown in Figure 1(a) 
(shown in dB) and (b) the MFCCs computed from the same musical signal.

A CQT spectrum X can 
be represented as the 
convolution between a 
pitch-normalized spectral 
component S (which 
mostly contains the 
timbre information) and 
an energy-normalized 
pitch component P (which 
mostly contains the pitch 
information).
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(i.e., the dc component). This process 
is meant to decouple the envelope from 
the pitch in the time domain by extract-
ing the slow-varying time components, 
which most likely correspond to the 
timbre and which will become the low-
est coefficients, from the fast-varying 
time components, which most likely 
correspond to the pitch and which will 
become the highest coefficients [5].

A computational example
The discriminative power of the CQHCs 
can be measured by evaluating them for 
a simple instrument similarity task on 
the NSynth dataset [4], a large-scale and 
high-quality data set of annotated musi-
cal notes, which is publicly available at 
https://magenta.tensorflow.org/datasets/
nsynth. The NSynth data set is com-
posed of 305,979 musical notes gen-
erated from 1,006 instruments as 4 s, 
monophonic audio signals at a sampling 
rate of 16 kHz with pitches ranging over 
all the note numbers of a standard MIDI 
piano (21–108), and with five different 
velocities (25, 50, 75, 100, and 127), 
whenever applicable. The instruments 
are organized into 11 families, those 
being bass, brass, flute, guitar, keyboard, 
mallet, organ, reed, string, synth_lead, 
and vocal, and three sources, namely, 
acoustic, electronic, and synthetic. The 
CQHCs are evaluated on the notes with 

a velocity of 75 only, leading to a subset 
of 60,388 different notes for 945 differ-
ent instruments.

The CQHCs for all the notes in this 
subset were derived by first computing 
the CQT spectrogram using librosa, with 
a sampling rate of 16 kHz, a hop length 
of 512 samples, a minimum frequency 
of 32.70 Hz (corresponding to C1), 95 
frequency bins, and 12 bins per octave, 
and then extracting 20 coefficients from 
the spectral component resulting from 
the deconvolution of the CQT spectro-
gram, leading to CQHCs of the size of 
20 (coefficients) by 126 (time frames). A 
power CQT spectrogram was used and 
the real part of the spectral component 
was taken to ensure real values. For com-
parison, the MFCCs were also comput-
ed using librosa, with a sampling rate of  
16 kHz, a window length of 1024 sam-
ples, a hop length of 512 samples, and 20 
coefficients, leading to MFCCs the same 
size as the CQHCs, i.e., 20 by 126.

The cosine similarity for every pair 
of CQHCs and every pair of MFCCs 
(without repetition) was then computed 
after flattening the features into vec-
tors of the length of 2,520 (20 by 126). 
These note similarities were averaged 
over every one of the 945 instruments, 
leading to similarity matrices of the size 
945 by 945 for both the CQHCs and the 
MFCCs. Figure 3 presents these instru-

ment similarity matrices for the CQHCs 
and MFCCs. As shown, the similarities 
for the CQHCs have more variance, 
while the similarities for the MFCCs 
are mostly very high (close to 1), show-
ing poor discriminative power between 
the different instruments. Figure 4 addi-
tionally depicts  self-similarities, i.e., the 
diagonal values in the similarity matrix 
(in green) and the error bars for cross-
similarities, i.e., the off-diagonal values 
in the similarity matrix (means in red 
and standard deviations in yellow) for 
every instrument, for the CQHCs and 
MFCCs. As shown, the self-similarities 
for the CQHCs are noticeably higher 
than the means of the cross-similar-
ities for most of the instruments, and 
generally higher than the means plus 
standard deviations as well, showing 
good discriminative power, while the 
self-similarities and cross-similarities 
for the MFCCs are all very high (close 
to 1). Also computed were the average 
self-similarities and cross-similarity 
means and standard deviations over all 
the 945 instruments for the CQHCs, giv-
ing 0.770, 0.513, and 0.208, respectively, 
and for the MFCCs, giving 0.939, 0.914, 
and 0.036, respectively.

The note similarities over every one 
of the 11 instrument families were also 
averaged, leading to similarity matrices 
of the size 11 by 11 for both the CQHCs 

800

600

400

200

0

In
st

ru
m

en
t I

nd
ex

Instrument Index

CQHC Instrument Similarities

0 200 400 600 800

1

0.8

0.6

0.4

0.2

0

800

600

400

200

0

In
st

ru
m

en
t I

nd
ex

Instrument Index
(a) (b)

MFCC Instrument Similarities

0 200 400 600 800

1

0.8

0.6

0.4

0.2

0

FIGURE 3. The similarity matrices computed for each pair of notes and averaged over every instrument of the NSynth subset for (a) the CQHCs and  
(b) the MFCCs.
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and the MFCCs. Figure 5 depicts these 
instrument-family similarity matrices, 
and Figure 6 additionally shows the self-
similarities (in green) and cross-similar-
ities (means and standard deviations in 
red) for every instrument family for the 
CQHCs and MFCCs. As shown once 
again, the similarities for the CQHCs 
have more variance compared with the 
MFCCs, and their self-similarities are 

noticeably and mostly higher than the 
means plus standard deviations of their 
cross-similarities, while the self-similari-
ties and cross-similarities for the MFCCs 
are all very high and harder to tell apart. 
We can clearly see with the CQHCs, for 
example, that the organ family has high 
self-similarity, showing that most of the 
instruments and notes in that family are 
quite similar to each other in terms of 

timbre. We can also see that the organ 
family is somewhat similar to the brass, 
flute, reed, and vocal families but quite 
different from the other families. On the 
other hand, the string family has fairly 
low self-similarity, showing that either 
the instruments or notes in that family 
differ substantially from each other, or 
that the CQHCs were not able to properly 
capture the overall timbre for this  family. 
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We also computed the average self-sim-
ilarities and cross-similarity means and 
standard deviations over all the 11 instru-
ment families for the CQHCs, giving 
0.605, 0.500, and 0.088, respectively, and 
for the MFCCs, giving 0.917, 0.905, and 
0.013, respectively.

What we have learned
This article demonstrated that a simple 
but effective pitch-independent timbre 
feature well adapted to musical data 
could be designed by decomposing the 
CQT spectrum into a pitch-normalized 
spectral component and an energy-nor-
malized pitch component and extracting 
a number of harmonic coefficients from 
the spectral component. These CQHCs 
provide a compact and interpretable 
feature for characterizing the timbre of 
a musical instrument, showing higher 
variance in terms of similarities on a 
simple instrument similarity task com-
pared with the MFCCs, which are still 
often used by MIR practitioners to char-
acterize timbre in music. For the inter-
ested reader, a Python implementation 
of the CQHCs online is provided with 
some examples at https://github.com/
zafarrafii/CQHC-Python. 
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FIGURE 6. The self-similarities and cross-similarities derived from the instrument-family similarity matrices shown in Figure 5 for (a) the CQHCs and (b) 
the MFCCs.
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